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We present a novel application of filters to the spherical harmonics (PN) expansion for radi-
ative transfer problems in the high-energy-density regime. The filter we use is based on
non-oscillatory spherical splines and a filter strength chosen to (i) preserve the equilibrium
diffusion limit and (ii) vanish as the expansion order tends to infinity. Our implementation
is based on modified equations that are derived by applying the filter after every time step
in a simple first-order time integration scheme. The method is readily applied to existing
codes that solve the PN equations. Numerical results demonstrate that the solution to
the filtered PN equations are (i) more robust and less oscillatory than standard PN solutions
and (ii) more accurate than discrete ordinates solutions of comparable order. In particular,
the filtered P7 solution demonstrates comparable accuracy to an implicit Monte Carlo solu-
tion for a benchmark hohlraum problem in 2D Cartesian geometry.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Radiation plays an important role in several high-energy-density physics contexts such as neutrino transport in core-col-
lapse supernovae [1,2] or thermal radiative transfer (via photons) in inertial confinement fusion [3,4] and terrestrial radiat-
ing shock experiments [5–7]. In these examples, radiation is a major conduit for energy exchange between different
materials in the system. Consequently, the fidelity of any radiation-hydrodynamics calculation will rely heavily on accurate
simulations of time-dependent radiation transport.

A common challenge for thermal radiative transfer computations in high-energy-density problems is the presence of a
material medium that is characterized by a wide-ranging optical thicknesses. Such is the case for experimental setups that
have regions of vacuum situated between optically thick materials or when there are large spatial variations in the radiation
energy-density, since the material opacity is generally smaller for high-energy photons than for low-energy photons. Mate-
rial interaction is the primary coupling mechanism for radiation energy. Thus in regions where a material is transparent to
the radiation, photons move for long distances without their direction of flight being changed through collisions with the
material. The lack of redistribution of photon direction leads to so-called ‘‘ray effects” in discrete ordinates (SN) solutions
to radiative transfer problems [8,9] in which the angular grid leaves an imprint on the numerical solution. These effects
can be partially mitigated by increasing the number of ordinates or by using biased quadrature sets to resolve important
areas of the problem [10].

Stochastic methods, such as the implicit Monte Carlo method of Fleck and Cummings [11], are widely considered to be the
most accurate method for radiative transfer in the high-energy-density regime. These methods do not suffer from ray effects,
. All rights reserved.
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but they are not without non-physical artifacts. Monte Carlo solutions are characterized by noise due to a finite sampling of
the phase space. Moreover, the implicit Monte Carlo method can allow non-physical overheating of the material medium
when the radiation is strongly coupled to the material through absorption [12,13].

A third path for radiative transfer simulations is the spherical harmonics (PN) method. This is a spectral method, based on
a linear expansion of the radiation intensity in angle using spherical harmonic basis functions. The method yields a hyper-
bolic system of partial differential equations for the expansion coefficients, which are just the angular moments with respect
to the basis (up to some normalization constants).

The spherical harmonic expansion has formal spectral convergence to the solution of the full radiative transfer equation
and preserves the property of rotational invariance.1 This contrasts with the discrete ordinates method, where a lack of rota-
tional invariance manifests itself in the aforementioned ray effects. As a hyperbolic system, the PN equations approximate the
movement of radiation as a series of waves. The speed of these waves is bounded by the speed of light. This restriction is phys-
ically reasonable and consistent with the transfer equations, unlike flux-limited diffusion methods where photons are allowed
to travel at unbounded speeds.

The spherical harmonic method does have its own shortcomings. For example, in streaming regions, where interac-
tions with the material are rare, solutions to the hyperbolic system have non-physical oscillations. These oscillations are
numerical artifacts – a by-product of approximating a non-smooth function with a smooth basis. A catastrophic conse-
quence of these oscillations is that they can cause the radiation energy-density to become negative which, when the
radiative transfer is coupled to a material equation [14,15], can cause the material temperature to become negative.
Worse still, it has been shown that these negative solutions can arise in any finite-order spherical harmonics approxi-
mation [14].

There has been much previous work to address negative radiation energy densities associated with the spherical harmon-
ics method. Several closures have been proposed to truncate the series in a more physical or better-behaved way [16–21].
One currently fashionable approach is to use maximum entropy methods which generate nonlinear expansions with spher-
ical harmonic functions. However, most of these treatments are designed to close low order expansions and may not provide
a straightforward means to correct higher-order spherical harmonics expansions, or if they do extend to general PN expan-
sions, deriving and solving the resulting equations for a general expansion is onerous and may be computationally unstable
[22–24]. Other attempts to correct the negativity in the PN equations include adding artificial scattering terms to make the
intensity more isotropic [15] or introducing a floor for the radiation energy density. A general closure for the PN equations
based on solving a local optimization problem is the subject of concurrent work of the authors as well [25]. However, this
closure is also computationally intensive.

Thus, in this work, and in our preliminary results presented at a recent conference [26], we detail a method for improv-
ing spherical harmonic solutions that is simple to extend to high-order expansions, gives formal convergence to the under-
lying transport solution, and preserves the equilibrium diffusion limit. Using our method, we are able to solve problems of
radiative transfer that could not be solved with standard PN methods because they caused the material temperature to
become negative. An attractive feature of our method is that it can be implemented in existing codes that solve the PN

equations.
Our approach to making spherical harmonics methods more robust is to use a filter to remove oscillations from the recon-

struction of the intensity. By removing these oscillations, we are able to avoid negative solutions while maintaining angular
accuracy. We discuss general properties that a filter should possess and then detail a specific example. The filter that we
present is by no means the only possibility, nor do we claim that it is optimal. Nevertheless, we believe that the idea of apply-
ing filters to the spherical harmonics expansion is a efficient and effective way to make the method more robust and useful
for real-world, predictive simulations.

2. The spherical harmonics expansion

Before presenting filtered spherical harmonics, we recall briefly the equations of radiative transfer and the standard
spherical harmonics expansion. The equations we are ultimately interested in solving are the radiative transfer equation [27]
1 Rou
angular
1
c
@I
@t
þX � rxI þ rtI ¼ ra

ac
4p

T4 þ rs

4p
hIi ð1aÞ
and an energy equation for a stationary material
@

@t
eðTÞ ¼ raðhIi � acT4Þ: ð1bÞ
In these equations, I(x,X, t) is the specific intensity, e(T) is the internal energy-density, T(x, t) is the material temperature, and
c is the speed of light. The radiation constant a is related to the Stefan–Boltzmann constant rsb by the relation a = 4rsb/c. The
material medium is characterized by absorption, scattering, and total opacities (ra,rs, and rt = ra + rs respectively) and by
an equation of state Cv(T) = e

0
(T). The independent variables are the spatial variable x ¼ ðx; y; zÞ 2 R3, the angular variable
ghly speaking, this property says that solutions to the transfer equation are invariant under a common orthogonal transformation of the spatial and
components of phase space.
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X 2 S2 (that is, X is a point on the unit sphere), and the temporal variable t 2 [0,1). In spherical coordinates, X is specified
by a polar angle h 2 [0,p] and an azimuthal angle u 2 [0,2p). For notational convenience we have written integration over
the unit sphere as
hIi �
Z

S2
I dX ¼

Z 2p

0

Z 1

�1
I dldu;
where l: = cosh 2 [ � 1,1].
Eq. (1) does not take into account photon frequency, non-isotropic scattering such as Compton scattering, or material mo-

tion. These additional complications can be handled in our method, but the additional details required would obfuscate the
main thrust of this paper. In the remainder of the paper, we will refer to exact solutions of Eq. (1) as the transport solution.

The Nth-order spherical harmonic expansion of I is given by
I �
XN

l¼0

Xl

m¼�l

Ym
l ðl;uÞI

m
l ; ð2Þ
where, for integers l and m, Ym
l is the spherical harmonic function of order l and degree m, given by
Ym
l ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
Pm

l ðlÞeimu; 0 6 l; 0 6 m 6 l
and Pm
l is an associated Legendre function. For m < 0, Ym

l ¼ ð�1ÞmY�m
l . The spherical harmonic moments of I are defined Y as
Im
l :¼ hYm

l Ii;
where the overbar denotes the complex conjugate.
By taking spherical harmonic moments of Eq. (1a) and using recursion relations for the spherical harmonics, one can write

the PN equations as [27,28]
1
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for l 2 [0,N] and m 2 [ � l, l]. The constants in Eq. (3) are given by
Am
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mþ 1Þðlþmþ 1Þ
ð2lþ 3Þð2lþ 1Þ

s
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The material energy equation is only coupled to the I0
0 moment:
@

@t
eðTÞ ¼ ra

ffiffiffiffiffiffiffi
4p
p

I0
0 � acT4

� �
: ð5Þ
Though the PN equations are written in complex form, an equivalent real-valued system can be derived by rewriting the
exponential in the spherical harmonics expansion in term of sines and cosines or by adding and subtracting Im

l and I�m
l to

define new moments. In this work, we only solve the equations in two-dimensional Cartesian geometries in the x–z plane.
The assumption of no y-dependence implies that the real and imaginary components in Eq. (3) are decoupled.

The PN equations are formally exact in the limit N ? 1; nevertheless, we must use a finite value of N to do numerical
computations. Thus the system must be closed since the equation for Im

l includes moments of order l + 1. A common ap-
proach is truncation: simply set Im

Nþ1 ¼ 0. This closure is known as the ‘‘triangular truncation” in the spectral methods liter-
ature [29] and simply ‘‘the PN closure” in the particle transport literature [30]. The PN closure is motivated by the fact that as
the number of collisions between the photons and the material increases, the higher moments of I become small because the
intensity relaxes to an isotropic distribution.

Unfortunately, the truncation closure allows large oscillations in the reconstruction. One way to understand this fact is to
observe that the expansion in Eq. (2) can be derived by finding coefficients bm

l (which depend on x) that minimize the cost
functional [29]
J bm
l

� �
¼
Z

S2
dX I � IN bm

l

� �� �2
; ð6Þ
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where
INðbm
l Þ ¼

XN

l¼0

Xl

m¼�l

Ym
l ðl;uÞb

m
l :
The solution to this minimization problem is bm
l ¼ Im

l ; that is, given N, INðIm
l Þ is the best approximation of I in the L2 norm. Yet,

the functional J does not account for gradients with respect to X. As a result, the expansion can be highly oscillatory. In
regions of free-streaming transport, the PN equations will advect these oscillations through space.

We exhibit the oscillatory nature of the PN reconstruction in two important examples. In Fig. 1 we plot the PN reconstruc-
tion of a delta function at l ¼ 1

2 and a Heaviside (step) function with jump at l ¼ 1
2. Both of these distributions arise in real

problems: the delta function represents a beam and the Heaviside function corresponds to the edge of a shadow. Oscillations
in the PN expansions are evident in both cases and become worse as the order of the expansion increases. Moreover, in the
reconstruction of the beam, the P29 reconstruction has the largest negative values. In the next section, we add a term to the
functional J that penalizes large derivatives in angle to derive a filtered spherical harmonics expansion.

3. Filtered spherical harmonic expansions

We now derive an expansion of the intensity that is based on spherical harmonics, but does not allow large oscillations in
the solution. The modified expansion is termed a filtered spherical harmonics expansion in that each term of the original spher-
ical harmonics expansion is multiplied by an order-dependent coefficient and thus acts as a high-frequency filter. Following
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Fig. 1. The PN reconstruction of the intensity for several values of N, plotted as a function of l, with u = 0 fixed.
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Fig. 2. The filtered PN reconstructions for several values of a, plotted as a function of l, with u = 0 fixed.
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the colloquial terminology, we will also refer this expansion as the filtered PN or FPN expansion and the resulting equations as
the filtered PN or FPN equations.

The specific type of filter we apply is the spherical spline expansion discussed in Boyd’s monograph [29]. To derive this
filtered expansion, we add a penalty term to the functional J from the previous section to generate the new cost functional
2 In a
J a ¼
Z

S2
dXðI � INÞ2 þ a

Z
S2

dX r2
XIN

� �2
: ð7Þ
This new functional penalizes the second derivatives of the reconstruction.2 The parameter a > 0 tunes the strength of this
penalty, and obviously a = 0 recovers the original PN expansion.

The minimizer of J a can be found in a simple closed form. We recall that the spherical harmonic functions are eigenfunc-
tions of the spherical Laplacian:
r2
XYm

l ¼ �lðlþ 1ÞYm
l :
Using this relation, it can be shown [29] that the minimizer of J a is IN
bIm

l

� �
, where
bIm
l :¼ Im

l

1þ al2ðlþ 1Þ2
: ð8Þ
more general setting, the penalty terms may include arbitrary even derivatives.
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Therefore, our filtered expansion is simply
3 In a
operato
expansi
I �
XN

l¼0

Xl

m¼�l

Im
l Ym

l ðl;uÞ
1þ al2ðlþ 1Þ2

: ð9Þ
The filtered expansion preserves many of the fundamental properties of the PN expansion. First and foremost, the PN expan-
sion is rotationally invariant.3 This property is not changed by the filtered expansion, because the filter affects all m values for
a given l level in the same way. Second, linearity of the PN equations is preserved by an appropriate choice of a. Finally, be-
cause a > 0, the equations are hyperbolic – that is, all the eigenvalues of the filtered PN equations are real, as we will discuss
later.

The effects of the filter strength a are shown in Fig. 2. Here we take the filtered P7 reconstruction of the beam and the
shadow from Fig. 1. For the largest value of a shown, a = 0.1, the filtered expansion grossly smears out the original intensity.
As a is decreased, the filtered expansion reduces to the original PN expansion. In the reconstruction of the shadow, Fig. 2(b),
we can readily see the effect of the filter. As the value of a is increased from zero, the step at l ¼ 1

2 is smoothed out and the
oscillations are damped considerably. The filtered expansions can still produce negative values, but the magnitude of these
values is greatly reduced compared with the standard expansion. In cases where a guaranteed positive solution is essential,
other methods are available. Specifically, the positive-PN closure in Ref. [25] uses a constrained quadratic optimization prob-
lem to ensure a positive reconstruction.

In Fig. 3 the effect of the filter is shown when a is fixed, but the expansion order increases. Here we see that for a given
value of a, the accuracy of the reconstruction stagnates: the P7 solution is much better (and less negative) than the P3 recon-
struction, but beyond P7, the benefits of going to higher-order diminish significantly. This highlights the fact that the filter
strength must decrease as the expansion order increases in order to see the benefits of higher-order reconstructions.

4. Choosing the filter strength

So far, we have shown how the filtered expansion can improve the reconstruction of the radiation intensity by removing
oscillations. In this section, we discuss our approach to selecting a. Our method is, by no means, the only way to choose a;
but it does provide a recipe that for a fixed mesh spacing, preserves the equilibrium diffusion limit, maintains rotational
invariance, improves robustness, and formally converges to the transport solution.

Before presenting a formula for a, we first delineate the properties we would like this formula to have.

� Vanishing filter strength as N ?1. To ensure convergence to the transport solution (at least formally), the value of a
should go to zero as the order of the expansion increases. This property is motivated by the results we saw in Fig. 3: if
a remains constant as N increases, the quality of the reconstruction stagnates.
� The equilibrium diffusion limit. The radiative transfer/material energy system in Eqs. 1a and 1b has the important limit that

as ra becomes large, the radiation and blackbody source come into equilibrium and the two equations become a single
bstract form, the radiative transfer equation can be written T I ¼ 0. It is straightforward to show that the operator T commutes with the rotation
r R : f ðx;X; tÞ#f ðOT x;OT X; tÞ, for any orthogonal matrix O. The PN approximation maintains this property. In particular, if P is the projection onto the
on defined in (2), then the operator P � T also commutes with R.
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nonlinear diffusion equation for the material temperature [31]. To derive this equilibrium diffusion limit, one introduces a
small parameter � > 0 and rescales the quantities in (1) as follows:
ra !
ra

�
; rs ! �rs; c! c

�
; Cv ! �Cv: ð10Þ

Following the standard asymptotic analysis in Refs. [31,32], it can easily be shown that if a = O(�2), then the asymptotic
diffusion limit of the radiative transfer/material energy system is preserved by the FPN system through O(�). Therefore, a
should be dependent on rt in a certain way.
� Rotational invariance. The choice of a should preserve the rotational invariance of the transport equation. This will be the

case if a does not depend on X. In a preliminary study [26], we presented a means for choosing a based on keeping the P1

expansion positive. However, the way in which positivity was enforced made a dependent on the solution in particular
directions. The loss of rotational invariance was obvious in our results, and we have since abandoned this approach.
� Small a. We desire a to be as small as possible – that is, just large enough to reduce negative solutions and oscillations in

the solution to acceptable levels. For instance, a problem driven largely by free-streaming would potentially need a larger
value of a to eliminate negative solutions, compared to a problem where scattering was the dominant process.

Taking all of these items into account, we propose to calculate a as
a ¼ x
N2

1

rtLþ Nð Þ2
: ð11Þ
Here, L is characteristic length scale used to make a non-dimensional, and x is a user defined constant. This form for a has
the characteristics that we laid out above. As N ?1 the magnitude of a goes to zero, and when rt is an O(1/�) quantity, a =
O(�2). Also, a is not dependent on the solution in any particular direction. It only depends on the material properties in the
problem and the order of the expansion.

The presence of the problem dependent parameter x, as well as the power to which N is raised, allows the strength of the
filter to be adjusted for a given problem, while maintaining the desired properties of a. We understand that introducing such
a ‘‘tunable” parameter, is, on the surface, distasteful. Nonetheless, we also assert that the form we have given for a controls
the impact of the tunability: no matter what x is chosen, a will still go to zero as N increases (as long as N is raised to a
positive power). The value of x behaves in a similar manner to the implicitness parameter in implicit Monte Carlo simula-
tions [11] in the sense that it does not affect the limiting properties of the solution. Furthermore, the numerical experiments
shown below demonstrate that one can use a constant value of x across different problems.

Though in this work we solve the filtered PN equations with a semi-implicit scheme where we can evaluate the filter
terms explicitly, an implicit time integration scheme could have issues treating this term because of a potential temperature
dependence of rt. We believe that in such an instance treating the filter strength using a lagged value of rt would be suffi-
cient to ensure the radiation intensity is filtered where it should be without adding additional computational cost to the im-
plicit solve. In principle, one could treat the filter strength fully implicitly and for large time step sizes this might be
necessary.

We also would like to point out that the strength of a could be made time-dependent. In many problems the large oscil-
lations in the PN solutions appear in the transient regimes, soon after a source is turned on. In such cases, x could be made a
function of time so that the filter is initially strong and then subsides at later times as the system relaxes. We have not pur-
sued such time-dependent filters, but we believe they could be useful.

5. Implementation and modified equations

The filtering procedure can be used in combination with any existing PN code with minor alterations. For this work we use
a semi-implicit, linear, discontinuous Galerkin method [32,33]. The method employs a double minmod slope limiter to elim-
inate the artificial oscillations that can arise from our spatial scheme while still preserving the equilibrium diffusion limit
[34].

Our implementation is based on a set modified equations that are derived from the filtering procedure. For compactness,
we first rewrite the original PN system (3) in the following abstract form
1
c
@u
@t
þrx � ðJuÞ þ rtu ¼ Lðraqþ rsuÞ; ð12aÞ

@e
@t
¼ �eT

0ðraq� rauÞ: ð12bÞ
Here the vector u contains the components of Im
l ; we assume its first component is I0

0. The matrix J is a constant matrix whose
elements are components of the matrices A, B, C, D, E, and F that are defined in (4). The matrix L corresponds to the Kronecker
delta pair in (3). Thus all of its entries are zero, except for a one in the first diagonal entry that multiplies I0

0. The vector e0 is a
unit vector whose first component is one and
q ¼ ac
4p

T4e0: ð13Þ
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For the purposes of the derivation that follows, we ignore the exact form of the spatial discretization, including any stability
issues with DG. We also ignore the temperature equation, which is unaffected by the filter. A first-order, semi-implicit, tem-
poral discretization of the original PN system takes the form
4 The
in the z
unþ1 � un

cDt
þrx � ðJunÞ þ rtunþ1 ¼ L raqnþ1 þ rsunþ1

� �
: ð14Þ
We apply the filter to the current value of u, via a diagonal matrix F. This gives
unþ1 � Fun

cDt
þrx � ðJFunÞ þ rtunþ1 ¼ L raqnþ1 þ rsunþ1� �

ð15Þ
which we rewrite as
unþ1 � un

cDt
þrx � ðJFunþ1Þ þ rtunþ1 þ Sun ¼ L raqnþ1 þ rsunþ1� �

: ð16Þ
where the diagonal matrix S is given by
S :¼ Id� F
cDt

: ð17Þ
Thus the filtering process has effectively introduced a new source and modified the fluxes by a spatially dependent factor.
We note that the modified source term is similar in spirit to the recent work in Ref. [15]. However, in that work, the addi-
tional source term is isotropic, whereas the source term in Eq. (16) dampens higher-order moments more strongly, and
therefore, acts as a forward–peaked scattering term. We call this new system the filtered PN (or FPN) equations. Several re-
marks about the FPN system are in order.

� The filter matrix F introduces an explicit spatial dependence into the flux of the FPN system, via the cross-section in the
definition of a in (11). From a physical point of view, it is desirable to have information about the material medium
embedded into the closure. Be that as it may, a complete mathematical understanding of this system is more difficult than
for the original PN system. In particular, discontinuities in rt will lead to additional discontinuities in the FPN solution, so
that interface conditions must be applied when solving for fluxes between computational cells. In the DG method, it is
assumed that the flux crossing an interface is continuous at that interface. For the original PN system, which is linear, this
implies that characteristic waves crossing an interface are also continuous at that interface. This property is consistent
with the common assumption that the radiation intensity in directions crossing an interface is continuous across the
interface. However, the explicit spatial dependence of the FPN flux means that the characteristic waves will be discontin-
uous at material interfaces, unless the DG method is modified. The implications of this fact and whether such a modifi-
cation is appropriate should be explored in more detail.
� Unlike the original PN system, there is no simple relation for the eigenvalues of the FPN equations.4 However, the effect of a

on the eigenvalues for the case N = 7 is shown in Fig. 4. As a is increased, the eigenvalues are reduced and begin to cluster
eigenvalues of the free-streaming PN equations are the values for l for which Ym
Nþ1 ¼ 0 for m 6 N + 1 [28]. This can be easily derived for the eigenvalues

-direction and extended to the x and y directions by invoking the rotational invariance of the spherical harmonics expansion.
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near zero. Thus, in additional to damping the oscillations in the PN reconstruction, the filter slows down the speed at which
information is propagated.
� The source term in (16) is a diagonal matrix. For each fixed l, its effect is to multiply components Im

l , jmj 6 l, by the factor
sl ¼
1

cDt
al2kðlþ 1Þ2k

1þ al2kðlþ 1Þ2k
: ð18Þ

For the form of a given in (11) and with x ¼ cDt
Dx ,

sl ¼
cl2ðlþ 1Þ2

dxN2ðrtLþ NÞ2 þ cdtl2ðlþ 1Þ2
ð19Þ

We note that these terms blow up as Dx,Dt ? 0 together. This is a direct result of our choice of x: had we not made that
parameter cDt/Dx, the value of sl would be singular if Dt ? 0 independently. While such singular behavior is unwanted,
it should also be noted that we do not wish to recover the original PN system in the continuum limit either. Indeed, at this
point we are unsure of what the proper continuum limit should be. Even so, we have found the filter gives excellent results
for a relatively wide range of mesh parameters. Further investigation of this issue is ongoing.
Fig. 5. Scalar density / for the line-source problem when ct = 1. Note the changes in color scale to accommodate the different ranges of the S8 and
P7solutions.
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We now apply a predictor–corrector time integrator to the FPN system, treating the new source term Su explicitly. Includ-
ing the temperature equation, we have the following5:
5 It s
unþ1=2 � un

cDt=2
þrx � ðJFunÞ þ Sun þ rtunþ1=2 ¼ Lðraqnþ1=2 þ rsunþ1=2Þ; ð20aÞ

enþ1=2 � en

Dt=2
¼ �raeT

0ðqnþ1=2 � unþ1=2Þ; ð20bÞ

unþ1 � un

cDt
þrx � ðJFunþ1=2Þ þ Sunþ1=2 þ rtunþ1 ¼ Lðraqnþ1 þ rsunþ1Þ; ð20cÞ

enþ1 � en

Dt
¼ �raeT

0ðqnþ1 � unþ1Þ: ð20dÞ
In the streaming limit (rt ? 0), this is a second order approximation of the modified Eq. (16) and the temperature equation.
It can be understood in terms of the original filter F through a rearrangement of terms in the time differencing:
unþ1=2 � 1
2 ðFþ IdÞun

cDt=2
þrx � ðJFunÞ þ rtunþ1=2 ¼ Lðraqnþ1=2 þ rsunþ1=2Þ; ð21aÞ

enþ1=2 � en

Dt=2
¼ �raeT

0ðqnþ1=2 � unþ1=2Þ; ð21bÞ

ðunþ1 � Funþ1=2Þ þ ðunþ1=2 � unÞ
cDt

þrx � ðJFunþ1=2Þ þ rtunþ1 ¼ Lðraqnþ1 þ rsunþ1Þ; ð21cÞ

enþ1 � en

Dt
¼ �raeT

0ðqnþ1 � unþ1Þ: ð21dÞ
This form makes it clear how the algorithm combines filter and non-filtered components of u.

6. Numerical results

Our numerical results demonstrate that the filtered PN expansions do indeed enhance the robustness and quality of spher-
ical harmonics solutions. In all of the results that follow, we use x ¼ cDt

Dx and L = 1 cm. The problems we solve are 2D Cartesian
problems, and to solve PN equations in this geometry we set @I

@y ¼ 0.

6.1. The line-source problem

The first problem we solve is the so-called ‘‘line-source problem”. Here we have an initial condition of
Iðx; z;X; tÞ ¼ 1
4p

dðxÞdðzÞ;
hould be noted that the predictor value en + 1/2 is not needed in the corrector step and therefore, not explicitly computed.
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and rt = rs = 1.0 cm�1. We display the solution to this problem in terms of the scalar density:
/ :¼ hIi �
ffiffiffiffiffiffiffi
4p
p

I0
0
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which, from a physical perspective, is always non-negative. There is a semi-analytic solution to the radiative transfer equa-
tion for this problem given by Ganapol [35]. This solution, which we refer to as the transport solution, has a delta function of
uncollided photons supported on the circle

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

¼ ct and a smooth region of collided photons in the disk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

< ct.
There is no radiation beyond the delta function, because photons cannot travel faster than the speed of light. Though this
problem has cylindrical symmetry, we solve it in a 2D Cartesian domain because we are ultimately interested in the behavior
of transport methods in 2- and 3D.

This is a particularly vexing problem for spherical harmonics methods. Indeed the P1 solution to this problem has a neg-
ative singularity in the solution [36]. The uncollided particles in this problem have a very forward–peaked, beam-like distri-
bution, and as our analysis above showed (c.f. Fig. 1), such an intensity will lead to a negative PN reconstruction. Previous
works have used this problem as test bed for schemes that have been devised to improve the robustness of the PN equations
and for comparisons between methods [37,25,21,26]. See Ref. [15] for a discussion of negative PN solutions to a similar prob-
lem, which therein is a called a radiation blast wave.

In Fig. 5 we show the solution for several methods at time t when ct = 1 – that is, one mean-free time after the pulse. The
PN and SN solutions were obtained using Nx = Nz = 110 on a domain of 2.2 cm � 2.2 cm, and Dt = 0.24Dx/c. We used an equal-
weight quadrature set in the SN computation. The transport solution in Fig. 5(a) has the color range limited to a maximum of
1 because the magnitude of the delta function at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

¼ 1 would mask the collided radiation on the full scale. We can see
that behind the uncollided radiation, there is a smooth, nonzero region. Comparing the transport solution with filtered P7

solution, we see that the solution in this collided region is comparable to the transport solution, especially near the origin.
The wavefront of uncollided radiation in the filtered P7 solution does not agree with the transport solution: it is not as sharp
as the transport solution and radiation not traveled as far from the origin as it has in the transport solution. Yet, the filtered
P7 solution is the only solution in Fig. 5 that has a similar character to the transport solution: a smooth region near the origin
with a spike of uncollided radiation at the outer edge. The standard P7 solution in Fig. 5(d) is a series of rings moving out from
the origin with a negative region behind the inner two rings. The S8 solution in Fig. 5(c) is a collection of dots corresponding
to the discrete directions along which the SN equations track the flow of radiation. These dots are ray effects.

We can get a more detailed view of the solutions by looking along the diagonal line x = z in the first quadrant. The solution
along this line is shown in Fig. 6, where oscillations in the PN solution are clear. There are also oscillations in the S8 solution
due to ray effects, although these oscillations do not cause the solution to go negative. We also note that picking a different
line through the center of the domain will give a different shape for the S8 solution due to its lack of rotational invariance.
The filtered P7 solution has a hump in the solution where it is trying to resolve the delta function of uncollided radiation.
Behind this it agrees quite well with the transport solution.

We can also look at how the different methods behave as the angular resolution is increased. Fig. 7 shows the solution
using several angular approximations for each method. The standard PN solutions in Fig. 7(a) demonstrate no discernible
convergence when going from P3 to P5 to P7 other than the oscillations slightly decreasing in magnitude. This contrasts with
the filtered PN solutions, Fig. 7(b), where each successive increase in the PN order narrows the leading hump and moves it
closer to the transport wavefront. In the SN solutions in Fig. 7(c), the oscillations also dampen as N increases. Note, however,
that the lack of rotational invariance in the SN solution plays a role. Along this particular line, the S6 solution has moved far-
ther from the origin than the S8 solution; along a different line, the S8 solution might lead the S6 solution.

Before leaving the line-source problem, we again look at the solution along the diagonal x = z, but now when ct = 10 cm. In
these numerical solutions, we used Nx = Nz = 75 and a domain of 15 cm � 15 cm. From Fig. 8, we see that all methods con-
sidered are in close agreement with the transport solution, except (i) at the leading edge of the transport solution, where
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some photons are still uncollided and (ii) near the origin, where all methods show some small discrepancy with the transport
solution.

Finally, we also note that the though the FPN and PN solutions to the line-source problem should be rotationally invariant,
the introduction of a Cartesian grid does destroy true rotational invariance. This can be seen in Fig. 5: along the diagonals
x = z or �x = z, the solution is higher at the wavefronts than along the lines x = 0 or z = 0. We would expect that the loss
of rotational invariance would be the same in terms of relative magnitude for both FPN and PN because this is a spatial dis-
cretization effect and both methods use the same spatial discretization. Comparing line outs of the solutions we found this to
be the case.
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6.2. A lattice problem

In this problem we add the complication of multiple materials: a checkerboard of strongly absorbing regions embedded
into a purely scattering medium [38,37]. Here coupling to the material is neglected and only the transport of radiation is
considered. (This is equivalent to having an infinitely large heat capacity and zero initial temperature.) The layout for this
problem is shown in Fig. 9(a). The problem is defined on a 7 � 7 cm spatial domain with vacuum boundaries. The light blue
regions and the white region are purely scattering with rt = rs = 1 cm�1; the red regions are pure absorbers with
rt = ra = 10 cm�1; the white region also has an isotropic source Q = 1 cm�3 s�1. Initially, there is no radiation in the
problem.

In Fig. 9(b)–(f) we compare several methods for solving this problem. The IMC solution in Fig. 9(b) was reproduced from
Ref. [37]. The other solutions (FPn, Pn, and Sn) were obtained using Dx = Dz = 0.025 cm. The plots show log/ at t = 1.07 ns (i.e.
ct = 3.2 cm). At this early time particles have had just enough time to reach the domain boundary. A noticeable feature of
these solutions is that the beam of particles emerging from the regions where the corners of two absorbers meet. Also,
the absorbers create shadows, especially near the corners of the problem.

For this problem, the lack of material coupling means that the IMC solution is exact in the limit of an infinite number of
particles. Nevertheless, simulations with finite particle numbers are plagued by noise in regions where / is small. The FP11

solution agrees well with the IMC solution in regions where noise is not a factor. There is a difference between the FP11 and
FP7 solutions, though the two solutions are in qualitative agreement. The standard P7 solution has oscillations that cause the
solution to go negative; regions where this occurs are colored in black. The FP7 solution did not have these oscillations.
Removing these artifacts is significant; indeed, oscillations in the Pn solution for this problem have been observed even
for N as large as fifteen [38]. The discrete ordinates solution in Fig. 9(f) is dominated by ray effects. Though the S8 simulation
uses same number of degrees of freedom as the FP7 simulation, several features of the S8 solution are qualitatively different
from IMC and FP11 solutions.

6.3. A hohlraum problem

The other problem we solve is a modification to the simplified hohlraum problem that was originally suggested by Brun-
ner [37]. The problem layout is given in Fig. 10; note temperature dependence of rt. On the left, there is a 1 keV blackbody
source along the entire left boundary emitting radiation into the initially cold material. There is no analytic solution to this
problem, though we expect the solution to have the following characteristics: (i) due to the fact that radiation cannot reach
the back of the block directly, the central block should not be uniformly heated by the radiation source; (ii) due to shadow-
ing, the region that lies behind the block with respect to the source should have less radiation energy than regions within the
line of sight of the source.

For this problem, we will compare the FP7 solution to an S8 solution, an implicit Monte Carlo (IMC) solution [11], and a
flux-limited diffusion [17] solution. The IMC and flux-limited diffusion solutions effectively bracket the angular resolution
extremes: IMC has high angular fidelity because it samples the entire phase space of the intensity; flux-limited diffusion,
on the other hand, tracks only the scalar flux, whose evolution is approximated by a diffusion equation. It should be noted
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Fig. 11. Radiation temperature Trad for the hohlraum problem at t = 1 ns.
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that although IMC has high angular fidelity, it is not the exact solution even in the limit of an infinite number of sampled
particles. This is due to the fact that IMC has spatial and temporal discretization errors that can lead to issues in diffusive
regimes [39] and non-physical material heating [12,13].
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In Fig. 11, we display the radiation temperature
Trad :¼
ffiffiffiffiffi
/
ac

4

r

in the hohlraum at t = 1 ns, for each of the different methods. The PN and SN solutions were obtained using Nx = Nz = 100 and
Dt = 0.3Dx/c. The IMC solution used 106 particles per time step with a time step size of 10�2 ns and 200 mesh cells per
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direction. The flux-limited diffusion solution used Larsen’s flux limiter [40] with n = 2 and 200 mesh cells in each direction.
We do not show a standard P7 solution, because in that simulation, negative values in the radiation energy caused the
material energy to also become negative, which subsequently crashed the simulation. We also note that early in time, the
radiation energy for the filtered P7 solution also has some negative values in the vacuum regions at early times. However,
the magnitude of these values was much smaller and quickly decayed and, as a result, did not cause the material to cool from
its initial temperature.

From Fig. 11 we can see that there is a stark difference between the flux-limited diffusion solution and the other solutions.
The diffusion solution has a radiation temperature that is uniformly distributed around the block, whereas the other solu-
tions have noticeably less radiation to the right of the block. In addition, the radiation in the diffusion solution has penetrated
much farther into the walls and block.

To better differentiate between the IMC, filtered P7, and S8 solutions, we plot the solution along the lines defined by
z = 0.125 cm and x = 0.85 cm in Figs. 12 and 13. These lines are half-way between the wall and block on the bottom and right
part of the problem respectively. From these figures, the discrepancy between the flux-limited diffusion solution and the
other solutions is apparent; the noise in the IMC solution is also noticeable. In both figures, the IMC and filtered P7 solutions
are in rough agreement with the S8 solution under-predicting the radiation temperature relative to the other two. This is an
encouraging result for filtered spherical harmonics, because IMC is considered the benchmark for this problem.

The material temperature for each method is shown in Fig. 14. In these plots we observe that the block in the flux-limited
diffusion case has been almost uniformly heated. Meanwhile, in the S8 solution, ray effects have created hot spots on the back
wall of the problem and at the back of the block. The IMC and filtered P7 solution appear to be in good agreement, despite the
fact the IMC solution uses a higher spatial resolution.

7. Conclusion

We have presented a filtered spherical harmonic expansion as a means of making the standard PN approximation more
robust and less oscillatory. The filtering procedure changes the standard spherical harmonic reconstruction of the intensity
in order to suppress oscillations in the reconstruction. We also showed how filters can be implemented in existing spherical
harmonics codes in a manner that is convergent and preserves the equilibrium diffusion limit.

Numerical results demonstrate that the application of filters to the standard PN equations improved solutions consider-
ably. For the line-source problem, the filtered PN equations produce solutions that are comparable to SN and PN methods at
long times but vastly superior at short times. In another problem of radiative transfer, a 2D Cartesian hohlraum problem, the
filtered PN solution have comparable accuracy to an implicit Monte Carlo solution, without the ray effects found in SN sim-
ulations. The standard P7 could not solve this problem because the negative radiation energies caused the material temper-
ature to become negative, causing the calculation to crash.

We believe that filtered PN expansions present a promising approach to solving radiative transfer problems. Filters take
advantage of the benefits in the original expansion while reducing (or eliminating) the unwanted oscillations. While we feel
that the properties of the filter we presented – namely preserving the equilibrium diffusion limit and a filter strength that
vanishes as the expansion order goes to infinity – are necessary for any filter to have, we do not contend that our particular
choice of filter is the best possible. We do, however, point to our numerical results that demonstrate that our filter does lead
to accurate solutions without large oscillations. Other ways for choosing the filter strength are possible, and may prove to be
more effective on a certain subset of problems. Besides the choice of filter strength, the theoretical underpinnings of our
method should be investigated. We noted that discontinuities in the opacity introduces discontinuities in the filter and that
the proper continuum limit of the FPN equations is unknown. We expect that further investigation will uncover how these
concerns can be mitigated/eliminated.

In the future we plan on applying our filtering approach to implicit numerical methods for the PN equations in 2D axisym-
metric and 3D coordinates, including the multigroup energy discretization. We are hopeful that results for those problems
will be as encouraging as those presented above. Also, future work will need to address the computational cost of our filtered
expansions. The results in this paper were obtained using a semi-implicit time integration scheme. Such a time integration
method would see its largest benefits on massively parallel architectures; a topic we hope to explore in the future. It is our
belief that with further research our method can compete with the current paradigms used for large-scale radiation trans-
port problems in terms of computational cost.
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